NAG Fortran Library Routine Document G12ZAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of **bold italicised** terms and other implementation-dependent details.

1 Purpose

G12ZAF creates the risk sets associated with the Cox proportional hazards model for fixed covariates.

2 Specification

```
SUBROUTINE G12ZAF(N, M, NS, Z, LDZ, ISZ, IP, T, IC, ISI, NUM, IXS, NXS, X, MXN, ID, ND, TP, IRS, IFAIL)

INTEGER

N, M, NS, LDZ, ISZ(M), IP, IC(N), ISI(*), NUM, IXS(MXN), NXS, MXN, ID(MXN), ND, IRS(N), IFAIL

real

Z(LDZ,N), T(N), X(MXN,IP), TP(N)
```

3 Description

The Cox proportional hazards model (Cox (1972b)) relates the time to an event, usually death or failure, to a number of explanatory variables known as covariates. Some of the observations may be right censored, that is, the exact time to failure is not known, only that it is greater than a known time.

Let t_i for $i=1,2,\ldots,n$ be the failure time or censored time for the ith observation with the vector of p covariates z_i . It is assumed that censoring and failure mechanisms are independent. The hazard function, $\lambda(t,z)$, is the probability that an individual with covariates z fails at time t given that the individual survived up to time t. In the Cox proportional hazards model, $\lambda(t,z)$ is of the form

$$\lambda(t, z) = \lambda_0(t) \exp(z^T \beta),$$

where λ_0 is the base-line hazard function, an unspecified function of time, and β is a vector of unknown parameters. As λ_0 is unknown, the parameters β are estimated using the conditional or marginal likelihood. This involves considering the covariate values of all subjects that are at risk at the time when a failure occurs. The probability that the subject that failed had their observed set of covariate values is computed.

The risk set at a failure time consists of those subjects that fail or are censored at that time and those who survive beyond that time. As risk sets are computed for every distinct failure time, it should be noted that the combined risk sets may be considerably larger than the original data. If the data can be considered as coming from different strata such that λ_0 varies from strata to strata but β remains constant, then G12ZAF will return a factor that indicates to which risk set/strata each member of the risk sets belongs rather than just to which risk set.

Given the risk sets the Cox proportional hazards model can then be fitted using a Poisson generalised linear model (G02GCF with G04EAF to compute dummy variables) using Breslow's approximation for ties (Breslow (1974)). This will give the same fit as G12BAF. If the exact treatment of ties in discrete time is required, as given by Cox (1972b), then the model is fitted as a conditional logistic model using G11CAF.

4 References

Breslow N E (1974) Covariate analysis of censored survival data Biometrics 30 89-99

Cox D R (1972b) Regression models in life tables (with discussion) J. Roy. Statist. Soc. Ser. B 34 187–220

Gross A J and Clark V A (1975) Survival Distributions: Reliability Applications in the Biomedical Sciences Wiley

[NP3546/20A] G12ZAF.1

5 Parameters

1: N – INTEGER Input

On entry: the number of data points, n.

Constraint: $N \geq 2$.

2: M – INTEGER Input

On entry: the number of covariates in array Z.

Constraint: $M \ge 1$.

3: NS – INTEGER Input

On entry: the number of strata. If NS > 0 then the stratum for each observation must be supplied in ISI

Constraint: $NS \ge 0$.

4: Z(LDZ,N) - real array

Input

On entry: the ith row must contain the covariates which are associated with the ith failure time given in T.

5: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which G12ZAF is called.

Constraint: $LDZ \ge N$.

6: ISZ(M) – INTEGER array

Input

On entry: indicates which subset of covariates are to be included in the model.

If $ISZ(j) \ge 1$, the *j*th covariate is included in the model.

If ISZ(j) = 0, the jth covariate is excluded from the model and not referenced.

Constraints: $ISZ(j) \ge 0$ and at least one value must be non-zero.

7: IP – INTEGER Input

On entry: the number of covariates included in the model, p, as indicated by ISZ.

Constraint: IP = the number of non-zero values of ISZ.

8: T(N) - real array

Input

On entry: the vector of n failure censoring times.

9: IC(N) – INTEGER array

Input

On entry: the status of the individual at time t given in T.

If IC(i) = 0, indicates that the *i*th individual has failed at time T(i).

If IC(i) = 1, indicates that the *i*th individual has been censored at time T(i).

Constraint: IC(i) = 0 or 1, for i = 1, 2, ..., N.

10: ISI(*) – INTEGER array

Input

Note: the dimension of the array ISI must be at least N if NS > 0 and 1 otherwise.

On entry: if NS > 0, the stratum indicators which also allow data points to be excluded from the analysis. If NS = 0, ISI is not referenced.

G12ZAF.2 [NP3546/20A]

G12ZAF

If ISI(i) = k, indicates that the ith data point is in the kth stratum, where k = 1, 2, ..., NS.

If ISI(i) = 0, indicates that the *i*th data point is omitted from the analysis.

Constraints: if NS > 0, $0 \le ISI(i) \le NS$, for i = 1, 2, ..., N.

11: NUM – INTEGER

On exit: the number of values in the combined risk sets.

12: IXS(MXN) – INTEGER array

Output

Output

On exit: the factor giving the risk sets/strata for the data in X and ID. If NS = 0 or 1, IXS(i) = l for members of the lth risk set. If NS > 1, $IXS(i) = (j-1) \times ND + l$ for the observations in the lth risk set for the jth strata.

13: NXS – INTEGER Output

On exit: the number of levels for the risk sets/strata factor given in IXS.

14: X(MXN,IP) - real array

Output

On exit: the first NUM rows contain the values of the covariates for the members of the risk sets.

15: MXN – INTEGER Input

On entry: the first dimension of the array X and the dimension of the arrays IXS and ID as declared in the (sub)program from which G12ZAF is called.

Constraint: MXN must be sufficiently large for the arrays to contain the expanded risk sets. The size will depend on the pattern of failures times and censored times. The minimum value will be returned in NUM unless the routine exits with IFAIL = 1 or 2.

16: ID(MXN) – INTEGER array

Output

On exit: indicates if the member of the risk set given in X failed. ID(i) = 1 if the member of the risk set failed at the time defining the risk set and ID(i) = 0 otherwise.

17: ND – INTEGER Output

On exit: the number of distinct failure times, i.e., the number of risk sets.

18: TP(N) - real array

Output

On exit: TP(i) contains the ith disitinct failure time for i = 1, 2, ..., ND.

19: IRS(N) – INTEGER array

Output

On exit: indicates rows in X and elements in IXS and ID corresponding to the risk sets. The first risk set corresponding to failure time TP(1) is given by rows 1 to IRS(1). The *l*th risk set is given by rows ID(l-1) + 1 to ID(l) for l = 1, 2, ..., ND.

20: IFAIL – INTEGER

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. Users who are unfamiliar with this parameter should refer to Chapter P01 for details.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, for users not familiar with this parameter the recommended value is 0. When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

[NP3546/20A] G12ZAF.3

6 Error Indicators and Warnings

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors or warnings detected by the routine:

```
IFAIL = 1
      On entry, M < 1,
                N < 2,
      or
                NS < 0,
      or
      or
                LDZ < N.
IFAIL = 2
      On entry, ISZ(i) < 0 for some i,
                the value of IP is incompatible with ISZ,
                IC(i) \neq 1 or 0.
      or
                NS > 0 and ISI(i) < 0,
      or
                NS > 1 and ISI(i) > NS.
      or
IFAIL = 3
```

MXN is too small, the minimum value is returned in NUM.

7 Accuracy

Not applicable.

8 Further Comments

When there are strata present, i.e., NS > 1, not all the NXS groups may be present.

9 Example

The data are the remission times for two groups of leukemia patients (see page 242 of Gross and Clark (1975)). A dummy variable indicates which group they come from. The risk sets are computed using G12ZAF and the Cox's proportional hazard model is fitted using G11CAF.

9.1 Program Text

Note: the listing of the example program presented below uses **bold italicised** terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
G12ZAF Example Program Text.
      Mark 20 Revised. NAG Copyright 2001.
*
      .. Parameters ..
      INTEGER
                        NIN, NOUT
      PARAMETER
                        (NIN=5, NOUT=6)
      INTEGER
                        NMAX, MMAX, MLWK, MNRS
                        (NMAX=500, MMAX=20, MLWK=10000, MNRS=1000)
      PARAMETER
      .. Local Scalars ..
      real
                        DEV, TOL
                        I, IFAIL, IP, IPRINT, J, LDZ, LWK, M, MAXIT, MXN, N, ND, NS, NUM, NXS
      INTEGER
      .. Local Arrays
                        B(MMAX), COV(MMAX*(MMAX+1)/2), SC(MMAX),
      real
     +
                        SE(MMAX), T(NMAX), TP(NMAX), WK(MLWK),
     +
                        X(MNRS,MMAX), Z(NMAX,MMAX)
      INTEGER
                        IC(NMAX), ID(MNRS), IRS(NMAX), ISI(NMAX),
                        ISZ(MMAX), IXS(MNRS), NCA(NMAX), NCT(NMAX)
      .. External Subroutines ..
```

G12ZAF.4 [NP3546/20A]

```
EXTERNAL
                        G11CAF, G12ZAF
      .. Executable Statements ..
      WRITE (NOUT,*) 'G12ZAF Example Program Results'
      Skip heading in data file
      READ (NIN, *)
      READ (NIN,*) N, M, NS, MAXIT, IPRINT
      IF (N.LE.NMAX .AND. M.LE.MMAX) THEN
         IF (NS.GT.O) THEN
            DO 20 I = 1, N
               READ (NIN,*) T(I), (Z(I,J), J=1,M), IC(I), ISI(I)
   20
            CONTINUE
         ELSE
            DO 40 I = 1, N
               READ (NIN,*) T(I), (Z(I,J),J=1,M), IC(I)
   40
         END IF
         READ (NIN, \star) (ISZ(I), I=1, M), IP
         LDZ = NMAX
         MXN = MNRS
         IFAIL = 0
         CALL G12ZAF(N,M,NS,Z,LDZ,ISZ,IP,T,IC,ISI,NUM,IXS,NXS,X,MXN,ID,
                      ND, TP, IRS, IFAIL)
         TOL = 1.0e-5
         LWK = MLWK
         READ (NIN, *) (B(I), I=1, IP)
         IFAIL = 0
         CALL G11CAF (NUM, IP, NXS, X, MXN, ISZ, IP, ID, IXS, DEV, B, SE, SC, COV, NCA,
                      NCT,TOL,MAXIT,IPRINT,WK,LWK,IFAIL)
         WRITE (NOUT, *)
         WRITE (NOUT,*) ' Parameter
                                           Estimate',
                    Standard Error'
         WRITE (NOUT, *)
         DO 60 I = 1, IP
            WRITE (NOUT, 99999) I, B(I), SE(I)
   60
         CONTINUE
      END IF
99999 FORMAT (16,2(10X,F8.4))
      END
9.2
     Program Data
```

```
G12ZAF Example Program Data
42 1 0 20 0
 1 0 0
 1 0 0
 2 0 0
 2 0 0
 3 0 0
 4 0 0
 4 0 0
 5 0 0
 5 0 0
 8 0 0
 8 0 0
 8 0 0
 8 0 0
11 0 0
11 0 0
12 0 0
12 0 0
15 0 0
```

[NP3546/20A] G12ZAF.5

```
17 0 0
22 0 0
23 0 0
6 1 0
 6 1 0
 6 1 0
7 1 0
10 1 0
13 1 0
16 1 0
22 1 0
23 1 0
6 1 1
 9 1 1
10 1 1
11 1 1
17 1 1
19 1 1
20 1 1
25 1 1
32 1 1
32 1 1
34 1 1
35 1 1
0.0 0.0
```

9.3 Program Results

G12ZAF Example Program Results

Parameter	Estimate	Standard Error
1	1.6282	0.4331

G12ZAF.6 (last) [NP3546/20A]